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Manual semen evaluation methods are subjective and time-consuming. In this study, a deep learning algorithmic 
framework was designed to enable non-invasive multidimensional morphological analysis of live sperm 
in motion, improve current clinical sperm morphology testing methods, and significantly contribute to 
the advancement of assisted reproductive technologies. We improved the FairMOT tracking algorithm by 
incorporating the distance and angle of the same sperm head movement in adjacent frames, as well as the 
head target detection frame IOU value, into the cost function of the Hungarian matching algorithm. For sperm 
morphology, we used the BlendMask segmentation method to segment individual sperm. SegNet was used 
to separate the head, midpiece, and principal piece comments from each sperm. Experienced in vivo sperm 
physicians confirmed a morphological accuracy percentage of 90.82%. A total of 1272 samples were collected 
from multiple tertiary hospitals for validation of the system, which were also evaluated by physicians. The 
results of our system were highly consistent with those of manual microscopy. This study realized the automated 
detection of progressive motility and morphology of sperm simultaneously, which is crucial for selection of 
morphologically normal and motile sperm for intracytoplasmic sperm injection.
1. Introduction

Assessment of semen quality is critical for diagnosing male infer-

tility. The sixth edition of the World Health Organization’s reference 
manual for routine semen analysis includes criteria such as liquefac-

tion, consistency, volume, color, and pH Organization and others [19]. 
Sperm morphological abnormalities are categorized into three types: 
defective head, midpiece, and principal piece. Currently, clinical meth-

ods of sperm morphology detection involve manual assessment of the 
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size and shape of all three sperm substructures by trained technicians 
after staining the sperm to determine whether the sperm meets nor-

mal conditions, which is time-consuming and highly dependent on the 
expertise of clinical technicians.

Therefore, automated algorithms have been developed for the mor-

phological analysis of sperms. Early computer-aided sperm morpho-

metric analyses processed images to detect and locate sperm using 
threshold-, edge-, and region-based segmentation (techniques [20,23,

18,4]). These techniques require various preset thresholds for the ac-
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curate segmentation and extraction of regions of interest. Furthermore, 
the sperm images captured by the microscope’s optical system are af-

fected by the light and color of the sample, contaminants, and cells 
in the semen. The preset thresholds cannot be adaptively adjusted to 
changes in the target image. Therefore, segmentation techniques are of-

ten unsatisfactory [15].

Several techniques are available for the automated assessment of 
stained animal sperm. One such method was presented by Zhang [27], 
who used fluorescence microscopy to capture images of stained ram 
sperm. The morphometric analysis of these sperms was conducted using 
ImageJ software. In another study, Alegre et al. [1] used a combination 
of digital image processing and learning vector quantization (LVQ) to 
automatically classify the acrosome of boar sperm. This involved ac-

quiring images of sperm heads using a phase-contrast microscope and 
evaluating the acrosome status based on staining color. The findings 
from their experiments demonstrated a classification error of 6.8% for 
sperm heads.

The application of deep learning to sperm image categorization and 
segmentation has been reported in several studies ([24], [17]). Riordon 
et al. [21] used the VGG16 neural network to categorize sperm accord-

ing to the WHO standards for sperm shape, and validated the algorithm 
using two publicly available head datasets (HuSHeM and SCIAN) [10]. 
On both datasets, their system outperformed existing methods in terms 
of classification accuracy. However, this method could not distinguish 
between different parts of the same sperm. Javadi and Mirroshan-

del [16] used deep learning algorithms to classify sperm morphology 
with relatively high accuracy. Their model could detect morphological 
abnormalities in different parts of the human sperm and was trained 
and tested on the MHSMA dataset, demonstrating relatively good accu-

racy.

Several studies have explored the potential of advanced techniques 
for evaluating and classifying sperm cells according to various crite-

ria. Butola et al. [9] used high spatial phase sensitivity to capture the 
phase map of entire sperm cells, including the head, neck, and tail, 
and applied an end-to-end deep learning approach to classify normal 
sperm, H2O2-stressed, ethanol-stressed, and cryopreserved cells. Sim-

ilarly, Sato et al. [22] developed and evaluated a YOLOv3-based ma-

chine learning model for rapid morphological evaluation and tracking, 
with sensitivity and positive predictive value (PPV) for abnormal sperm 
at 0.881 and 0.853, respectively, and for normal sperm at 0.794 and 
0.689, respectively. Moreover, their model successfully tracked 78.4% 
of the objects completely, 21.6% partially, and no objects were lost. 
Fraczek et al. [14] introduced a comprehensive sperm classification 
method using Mask R-CNN, trained on two publicly available and one 
specially created sperm database, and proposed a 14-element feature 
vector for classifying four typical head defects (amorphous, normal, 
tapered, and pyriform) using a Support Vector Machine. Moreover, 
Dobrovolny et al. [12] demonstrated the potential of the YOLOv5 Ar-

chitecture to detect sperm in images, achieving the best not-super-tuned 
MAP of 72.15.

Despite the numerous studies on sperm morphological analysis, im-

plementing such a high-standard analysis remains challenging because 
of factors such as

1) sperm death and unavailability for in vitro fertilization treatment;

2) staining increasing the variability of sperm morphology and re-

ducing the consistency of sperm analysis;

3) failure to subdivide the morphology of sperm into the head and 
tail (midpiece and principal piece) regions, motility assessment decou-

pled from morphological analysis, and absence of a full-dimensional 
analysis of motile sperm multi-morphology.

Recently developed algorithms have been used for sperm classifica-

tion. FairMOT is a tracker that dominates multi-target tracking [28], 
and its structure can be used to accurately track sperm. BlendMask is 
an efficient, high-precision instance segmentation algorithm with good 
scalability and segmentation effects on crossed sperms [11]. The num-
177

ber of network layers of the SegNet model can be used in a larger 
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context to predict the three parts of sperm [3]. Finally, in 2019, Google 
proposed the EfficientNet model, a new generation of high-performance 
convolutional neural networks [25] designed to distinguish between the 
normal and pathological morphology of the head, midpiece, and prin-

cipal piece of sperm.

This study aimed to develop a novel algorithm based on FairMOT, 
BlendMask, SegNet, and EfficientNet to accurately classify microscopic 
sperm images with minimal computational effort. These findings could 
help improve the management of infertility in men.

2. Methods

2.1. Data collection and experimental methods

All data used in the algorithm development were obtained from 
the Male Department Laboratory of the Shanghai First Maternity and 
Infant Hospital between March and May 2022. Semen samples were 
collected from the Shanghai First Maternity and Infant Hospital, Tongji 
University School of Medicine (FMAI), affiliated with Shanghai Jiaotong 
University School of Medicine (Renji), and Shanghai JIAI Genetics & In-

stitute, affiliated with the Obstetrics and Gynecology Hospital of Fudan 
University (JIAI). Renji is recognized as a leading sperm bank in Shang-

hai [26]. All the participants provided informed consent. The study 
was approved by the ethics committees of the Shanghai First Maternal 
and Child Health Hospital (approval KS2201), Renji Hospital, Shanghai 
Jiaotong University School of Medicine (approval KY2022-032-B), and 
Fudan University Obstetrics and Gynecology Hospital (approval 2022-

38).

For each sample, 30–50 photographs and two or three videos were 
collected (see Fig. 1). In March, 250 samples, 10,700 images, and 750 
videos were collected at the Shanghai First Maternity and Infant Hospi-

tal. In April, 200 samples were collected at the JIAI, with 8600 images 
and 500 videos. In May, 250 samples were collected from Renji with 
10,700 images and 750 videos. Semen was liquefied, placed onto a 
sperm counting plate, and left to stand for 2 min. Images were captured 
using a light microscope equipped with a camera at 1000× magnifica-

tion. The microscope was equipped with an X-Y motorized stage and 
the acquisition route was customized for specialized slides to ensure a 
homogeneous and effective field of view. Videos of the semen smear 
were captured at 25 frames/s with a frame size of 1536×1024 pixels, 
corresponding to an area of 240×160 μm on the slide. A total of 2000 
1-s sperm motion videos were captured, of which 1800 were used for 
training and 200 for testing. Additionally, among the captured 30,000 
static sperm images, 27,000 were used for training and 3000 for testing. 
Three experienced male laboratory professional technicians indepen-

dently labeled all morphological data as normal or abnormal according 
to WHO standards. The final labels were determined using the majority-

vote method.

Morphological analyses were performed on the same semen sample 
using our algorithm and a traditional manual microscopic examination 
to evaluate the accuracy of the dynamic sperm morphology recogni-

tion algorithm. A total of 1272 samples were collected from the three 
hospitals for analysis, which were independent of the 2000 videos and 
30,000 images described earlier. Hospital technicians performed the 
staining process according to the manufacturer’s instructions (Sperm 
Morphology Stain Kit - Papanicolaou Method, ANHUI ANKE BIOTECH-

NOLOGY). Subsequently, they manually analyzed the sperm morphol-

ogy using an oil lens at 100 × magnification for artificial sperm mor-

phology analysis. They observed and recorded at least 200 sperms and 
categorized them as either normal or abnormal. For each specimen, the 
developed morphological analysis algorithm was used to directly ana-

lyze the sample, with a cumulative total of 200 thoroughly segmented 
sperm or the first 20 complete fields of view extracted from the recorded 

videos.
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Fig. 1. Structure of the algorithm framework. (A.a) Modified FairMOT network for multiple sperm tracking to obtain the viability results. (A.b) BlendMask in-

stance segmentation network for multi-frame single sperm segmentation. (B) SegNet semantic segmentation network. (C) EfficientNet-b0 classification network for 
morphological analysis of sperm. (Sperm dimension: μm).
2.2. Development of morphological recognition algorithms

2.2.1. Multiple sperm tracking methods

The FairMOT algorithm allows multi-object tracking and consists 
of two homogeneous branches that can predict pixel-wise objectness 
scores and re-ID features, resulting in a high detection and tracking 
accuracy. The detection branch uses an anchor-free method to estimate 
the centers and sizes of objects, which are represented as position-aware 
measurement maps. Similarly, the re-ID branch estimates a re-ID feature 
178

for each pixel to characterize the object centered at the pixel. Unlike 
previous anchor-based methods, which use feature maps of stride 32, 
FairMOT uses high-resolution feature maps of stride four. The elimina-

tion of anchors and the use of high-resolution feature maps better align 
Re-ID features with object centers, which significantly improves track-

ing accuracy [28].

Sperm morphology changes during movement, necessitating reso-

lution of the sperm tracking issue. To achieve sperm tracking, the 
FairMOT multi-object tracking algorithm was improved by incorporat-

ing sperm motion characteristics to increase the accuracy rate of sperm 

tracking. FairMOT is a highly advanced tracking algorithm that uses 
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an anchor-free target detection method, the Centernet algorithm [29], 
to estimate the target center on a high-resolution characteristic graph. 
By adding an output branch for head keypoint detection using the Cen-

ternet algorithm, we were able to predict the central point and detect 
more keypoints without changing the network structure. The head key-

point was connected to the target detection center point to represent the 
direction of the head movement. FairMOT was used to determine the 
appearance distance of the Hungarian algorithm match using the ID fea-

ture, which considered that the appearance distance of the same sperm 
in adjacent frames was greater than that of different sperm. Based on 
the motion characteristics of the sperm, the limited motion of sperm in 
adjacent frames, and the 𝐼𝑂𝑈 > 0 of its head target detection frame, we 
integrated the head frame IOU and the motion angle of the sperm. The 
combination of the head frame IOU, angle, and distance of the head 
central point was the cost function for the first Hungarian algorithm 
match, and the cost function calculated by the sperm appearance dis-

tance was used for the remaining sperm matches that did not match for 
the first time. The FairMOT algorithm was trained using sperm videos 
captured using a microscope, whereas other models were trained using 
static images.

We performed Hungarian algorithm matching by combining the 
head frame IOU, angle, central point distance, and sperm appearance 
distance as the cost function to address the problem of sperm motion 
crossover and the similar appearance of identical sperm exchanging IDs. 
The algorithm successfully achieved accurate tracking of each sperm 
even in dense distributions. After reliable sperm tracking results were 
obtained, the motion trajectory of the same sperm was determined. The 
viability findings were then acquired by counting according to WHO 
standards [19]. Progressive motility (PR) was defined as the active 
movement of sperm in a straight line or a large circle, regardless of 
speed. Non-progressive motility (NP) encompassed additional types of 
non-forward motion, such as swimming in a small circle with little or 
no tail momentum driving the head to move or only a tail wobble. Im-

motility (IM) was characterized by the absence of movement.

2.2.2. Extraction of single sperm segmentation

BlendMask is an instance segmentation framework based on the 
FCOS object detector. The bottom module of the framework predicts 
bases using either backbone or FPN features. A single convolution layer 
is then added to generate attention masks and bounding box predic-

tions. For each predicted instance, the blender crops the bases with its 
bounding box and linearly combines them according to the learned at-

tention maps [11].

We used the BlendMask framework to obtain a single sperm from 
each frame. The algorithm learns different levels of feature maps by in-

troducing the fading module before Roi pooling, which allows for better 
capture of instance boundaries and improves the segmentation accu-

racy. Additionally, the feature fusion module fuses the feature maps 
learned by the fading module with the backbone network features of 
the Mask R-CNN to further improve the segmentation accuracy. Blend-

Mask also uses feature fusion of multiple positive and negative samples 
to improve the algorithm’s segmentation of small- and high-density tar-

gets by suppressing category-independent information. We trained the 
instance segmentation model using BlendMask on 27,000 sperm images. 
The trained model accurately separated and obtained a single sperm, 
and then correlated the head position coordinates with the sperm track-

ing findings to obtain a single sperm with the same ID in all video 
frames.

2.2.3. Extraction of head, midpiece, and principal piece comments

After the multiple sperm images underwent the instance segmenta-

tion step, we used the thresholding technique to exclude overly large, 
connected regions (some sperm were heavily adhered or heavily cov-

ered by impurities) that were difficult for the instance segmentation al-

gorithm to segment correctly. To eliminate background interference, we 
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placed each sperm individually in the background image with 380×380-
Computational and Structural Biotechnology Journal 24 (2024) 176–184

pixel values of zero, and then extracted different parts of each sperm, 
including the head, midpiece, and principal piece, for individual mor-

phological analysis.

SegNet is a core trainable segmentation architecture that consists 
of an encoder network, corresponding decoder network, and pixel-wise 
classification layer. The architecture of the encoder network is topo-

logically identical to that of the 13 convolutional layers in the VGG16 
network. The decoder network converts the low-resolution encoder fea-

ture maps into full input-resolution feature maps for pixel-wise classifi-

cation. The novelty of SegNet lies in the manner in which the decoder 
upsamples its lower-resolution input feature maps. Specifically, the de-

coder uses pooling indices computed in the max-pooling step of the 
corresponding encoder to perform non-linear upsampling [3].

We used the SegNet semantic segmentation model to segment the 
head, midpiece, and principal piece comments, instead of continuing 
with the instance segmentation method, because the three sperm parts 
are positioned independently of each other. Accurate segmentation re-

sults could be obtained using only semantic segmentation algorithms. 
This technique allowed SegNet to achieve high segmentation accu-

racy using fewer computational resources. We annotated and screened 
27,000 sperm images used previously to obtain 80,000 single-sperm im-

ages for training the semantic segmentation model. Using the semantic 
segmentation approach, a single sperm could be divided into three in-

dependent parts (head, midpiece, and principal piece comments).

2.2.4. Classification of normal morphological abnormalities

We then used EfficientNet to perform a morphological classification 
of the three sperm components. EfficientNet is a convolutional neural 
network architecture specifically designed for image classification tasks 
and uses a compound scaling method. This method simultaneously ad-

justs the depth, width, and resolution in the network, allowing it to 
adapt better to images of different sizes and achieve optimal outcomes 
across multiple image classification tasks. Its faster training speed and 
updated model size can be efficiently applied for sperm morphology 
classification [25].

The classification and semantic segmentation algorithms used the 
same data batch for model training. In addition to using the classifica-

tion algorithm, we estimated the head length, width, and aspect ratio 
based on the head segmentation findings in accordance with the WHO 
6th edition standards. For individual sperms, the morphology of the 
head, midpiece, and principal piece was examined separately to deter-

mine their normality. Any sperm with abnormalities in any of these 
regions was considered to have abnormal morphology. Due to the lim-

ited field of view during examination, only sperms with complete and 
intact morphology of the head, midpiece, and principal piece were in-

cluded in the analysis.

Based on the tracking results of multiple sperm, morphological anal-

ysis was performed on each sperm in multiple consecutive frames. The 
final morphological analysis results for each sperm was obtained by ex-

amining the morphological effects of the sperm in multiple frames. This 
approach, which fully considered the morphological characteristics of 
different frames of the same sperm, enhanced the accuracy and objec-

tivity of the final morphological analysis.

2.2.5. Algorithm deployment

We developed our system using C++ and accelerated image process-

ing using an Nvidia RTX A5000 32 GB graphics card and multi-threaded 
processing. Depending on the semen concentration, 10 to 15 videos 
were captured, and the forward inference of the network model was 
accelerated using TensorRt36. The process achieved a speed of up to 22 
s/video, resulting in a complete morphological analysis within 3 min.

2.3. Statistical analysis

MedCalc software was used for statistical analyses. Least-squares 

regression analysis was used to compare the manual and automated 
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Fig. 2. Algorithm implemented for sperm defect type identification and morphological findings. (A) Head defect. (B) Midpiece defect comments. (C) Principal piece 

defect comments. (D) Excess residual cytoplasm. (Dimensions of sperm: μm).

methods and to determine the Pearson correlation coefficients. Addi-

tionally, Bland-Altman plots and Passing-Bablok regression methods 
were used to analyze the consistency of the two methods and detect 
any systematic errors. The Bland-Altman analysis [5–7] is based on the 
calculation of the average difference between the results obtained by 
the two methods, and enables the identification of systematic bias. It is 
widely used to assess consistency between two different instruments or 
measurement techniques. Passing-Bablok regression is a linear regres-

sion approach that makes no specific assumptions regarding the sample 
distribution and measurement error [2]. The results were independent 
of the distribution of X and Y using the method (or instrument). The 
slope B and intercept A were calculated based on 95% confidence in-

tervals. These confidence intervals were used to determine whether the 
differences between B and one and between A and zero were only ran-

dom.

3. Results

3.1. Achieving accurate judgment of unstained non-invasive sperm 
morphology

Fig. 2 displays the single sperm morphologies obtained by the al-

gorithm, which accurately detected the four categories of abnormal 
sperm morphology according to WHO criteria. Our algorithm used an 
unstained, non-invasive live sperm morphology calculation and ana-

lyzed each sperm in the video. Each sperm was classified using deep 
learning, and the shape parameters of the head, midpiece, and princi-

pal piece of the sperm were measured. Highly accurate morphological 
results were obtained for unstained sperm. Our algorithm accurately 
classified the 11 abnormal sperm morphologies listed by WHO (Head: 
Tapered, No-acrosome, and Small; Neck and midpiece defects: Bent 
neck, Asymmetrical, Thick insertion, Thin, and Excess residual cyto-

plasm; Tail defects: Short, Bent, and Coiled).

3.1.1. Tracking accuracy

We used the improved FairMOT multi-object tracking algorithm in 
videos to track sperm [28]. The performance of multi-sperm tracking 
was evaluated using multi-object tracking accuracy (MOTA), a standard 
evaluation metric for multi-object tracking algorithms. Finally, 200 test 
sets yielded an average MOTA value of 93.47%, which was calculated 
as follows: ∑

𝑡(𝑚𝑡 + 𝑓𝑝𝑡 +𝑚𝑚𝑒𝑡)
180

𝑀𝑂𝑇𝐴 = 1 − ∑
𝑡 𝑔𝑡

(1)
where 𝑚𝑡 is the number of targets missed in t-frames, 𝑓𝑝𝑡 is the number 
of misidentified targets in t-frames, 𝑚𝑚𝑒𝑡 is the number of incorrectly 
matched targets in t-frames, and 𝑔𝑡 is the number of real targets in t-
frames.

Table 1 presents the multi-sperm tracking performance data for the 
200 test sets. These 200 sets were divided into six groups based on 
sperm concentration, and the average results for each group were cal-

culated separately. When sperm distribution was relatively dispersed, 
each sperm could be accurately tracked. However, when sperm were 
close or intersecting, false matches or sperm misses could have oc-

curred. Among the six groups of videos, the first and second groups had 
dense sperm distribution and a very high probability of sperm proxim-

ity or intersection, resulting in an MOTA of approximately 90%. The 
third and fourth group videos had moderate sperm distributions, and 
the MOTA reached 95%. The fifth and sixth group videos had sparser 
sperm distributions, and the MOTA reached 97%. Hence, good tracking 
results could be obtained regardless of sperm concentration; however, 
more precise results could be achieved with lower sperm concentra-

tions.

3.1.2. Segmentation accuracy

We used BlendMask segmentation to extract a single sperm from 
static images, and then used SegNet semantic segmentation to identify 
its three parts: head, midpiece comments, and principal piece com-

ments. Subsequently, we used the EfficientNet classification algorithm 
for the triple classification of sperm to obtain the morphological classifi-

cation of the head, midpiece comments, and principal piece comments. 
Finally, we incorporated constraints for each sperm part to evaluate 
the same frame morphological result for that sperm. We used the BOX 
Average Precision (BOX AP) and MASK Average Precision (MASK AP) 
to evaluate the instance segmentation results. The AP is calculated by 
integrating the PR curve, a curve graph with the recall value on the 
horizontal axis, and the precision value on the vertical axis. The recall 
and precision are explained below. BlendMask instance segmentation 
achieved an integrated BOX AP of 0.9437 and MASK AP of 0.9290 af-

ter testing with 3000 test sets. For the semantic segmentation, we used 
the Dice method:

𝐷𝑖𝑐𝑒 = 2|𝑋 ∩ 𝑌 |
|𝑋|+ |𝑌 | (2)

where X denotes the Ground Truth, and Y denotes the Prediction. The 
Dice values of all 3000 test sets were 0.996, 0.976, and 0.998 for the 

head, midpiece comments, and principal piece comments, respectively.
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Table 1

Evaluation of multi-sperm tracking performance.

Teams 1 2 3 4 5 6

Frames T 25 25 25 25 25 25∑
𝑡

𝑚𝑡 97.15 ± 13.64 77.09 ± 14.02 20.9 ± 6.39 8.9 ± 6.44 7.33 ± 2.22 6.24 ± 2.18
∑
𝑡

𝑓𝑝𝑡 44.94 ± 11.88 25.09 ± 11.84 32.21 ± 8.23 19.42 ± 6.24 10.06 ± 7.2 4.9 ± 2.75
∑
𝑡

𝑚𝑚𝑒𝑡 14.03 ± 3.84 5.97 ± 5.36 1.30 ± 1.12 0.0 0.0 0.0
∑
𝑡

𝑔𝑡 1379.42 ± 16.18 1080.72 ± 14.32 809 ± 10.73 658.42 ± 16.37 469.42 ± 16.91 367.47 ± 12.76

MOTA (%) 88.68 ± 3.75 89.99 ± 2.65 93.27 ± 2.62 95.70 ± 2.04 96.23 ± 1.61 96.97 ± 0.86

Table 2

Performance recognition results for head, midpiece comments, and principal piece 
comments.

Precision Recall Sensitivity Specificity

Head 0.589 0.918 0.918 0.885

Midpiece comments 0.936 0.927 0.927 0.931

Principal piece comments 0.937 0.976 0.976 0.976
3.1.3. Accuracy of morphological analysis

A total of 63,092 single spermatozoa were evaluated for morpholog-

ical recognition accuracy using 3000 test sets. Accuracy was calculated 
as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(3)

True positive (TP) signifies that the sperm labeled as abnormal by 
the physician was also predicted as abnormal by the algorithm. True 
negative (TN) indicates that the sperm labeled as normal by the physi-

cian was also predicted as normal by the algorithm. False positive (FP) 
signifies that the sperm labeled as normal by the physician was pre-

dicted as abnormal by the algorithm. False negative (FN) indicates that 
the sperm labeled as abnormal by the physician was predicted to be 
normal by the algorithm. The morphological recognition accuracy of 
whole sperm was 90.82%.

Because of the unbalanced distribution of positive and negative data 
in the test sets, we extracted head normal and abnormal data for 882 
and 1026 sets, respectively, midpiece normal and abnormal data for 927 
and 821 sets, respectively, and principal piece normal and abnormal 
data for 1658 and 1669 sets, respectively. Physician-determined out-

comes were considered to be the gold standard. Accuracy, sensitivity, 
specificity, recall, and precision were used to determine the accuracy of 
the algorithm. The formula for accuracy is presented above. The formu-

las for the remaining four indicators are as follows:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(5)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7)

The test results for the head, midpiece comments, and principal 
piece comments are presented in Table 2. We used the EfficientNet clas-

sification algorithm [25] in addition to the head aspect ratio, midpiece 
width, and principal piece length to assess the normal and abnormal 
conditions of the three parts of sperm. Because of important influenc-

ing factors, such as the vacuole of the head and the acrosome, the 
head was accurately classified at 90.6%. The accuracy rate for the mid-

piece recognition was 92%. However, errors in the recognition process 
mainly occurred because of the asymmetric access of the midpiece to 
the head and incorrect measurement of the midpiece width. The length 
of the principal piece was computed using the principal piece comments 
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obtained through the segmentation. Our primary segment recognition 
algorithm recognized the acute angle bend and curl with high accuracy, 
resulting in an overall recognition rate of 97% for the principal piece.

3.2. Calculating the percentage of progressively motile and morphologically 
normal sperm

Fig. 3 shows that most samples obtained from the three hospitals 
had higher values of Sperms × (PR & Normal)% than Sperms × PR% 
× Normal%. The conventional method can only provide an approxi-

mate estimate of the number of sperm with progressive motility and 
normal morphology by multiplying the regular total number of sperm 
by the percentage of progressive motility and the percentage of mor-

phologically normal sperm. However, this method may not be able to 
detect sperm with progressive motility and normal morphology in in-

dividuals with low motility or low morphological normality, resulting 
in an almost zero rate that cannot be detected using the conventional 
method. To overcome this limitation, our system could accurately cal-

culate the value of progressively motile and morphologically normal 
sperm by conducting simultaneous morphological and motility analyses 
on the same motile sperm. This novel method addresses the shortcom-

ings of existing methods for calculating the results for this specific set 
of sperms with low motility or normal morphology.

3.2.1. High consistency with multicenter morphological test results

To validate the accuracy of our algorithm in assessing sperm mor-

phology, we analyzed the same semen sample separately using both 
manual and algorithmic approaches, and reported the morphological 
normality results for each sample. This study was conducted in three 
Grade A tertiary hospitals in Shanghai. A total of 1272 samples were 
collected from the three hospitals for validation. These 1272 samples 
were completely independent of those used to test the models.

Table 3 shows a comparison between the morphological results af-

ter staining in the three hospitals and the results of our algorithm for 
analyzing unstained semen samples. The data are presented as means 
± standard deviation, slope, 95% consistency range of the regression 
line intercept, and Pearson correlation coefficient. Morphological data 
were expressed as the percentage of normal sperm to the total number 
of sperm.

Table 3 and Fig. 4 A-C show that the Pearson’s r-values of our algo-

rithm were all greater than 0.9 when compared to the stained sperm 
morphology from Shanghai First Maternity and Infant Hospital and 
Shanghai JIAI Genetics & Institute. The range of morphological differ-

ences in the Bland-Altman plots was less than 4, which was consistent 
with the WHO sampling error range. Fig. 4 D-E shows that the 95% 

consistency range of the slope of the stained morphology between our 
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Table 3

Slope of the Passing-Bablok plot and 95% consistency range of the regression line intercept.

FMAI (algorithm) RenJi (algorithm) JIAI (algorithm)

𝑀𝑒𝑎𝑛 ±𝑆𝐷 5.22 ± 4.02 (4.71 ± 3.98) 7.48 ± 4.37 (7.40 ± 4.64) 3.9 ± 4.0 (5.1 ± 4.9)

FMAI RenJi JIAI

Pearson 0.916 0.922 0.903

Slop 1.000 to 1.111 0.875 to 1.000 0.667 to 0.778

intercept -0.111 to 1.000 1.000 to1.250 0.111 to 0.500
Fig. 3. Comparison of the two methods for calculating sperm with progressive 
motility and normal morphology. (A-C) Comparative results of the two methods 
in the three hospitals (ICH, Renji, and Ji’ai). respectively). Sperms × PR% ×
Normal% indicates the multiplication of the total number of conventional sperm 
by the percentage of progressive motility and the percentage of morphologically 
normal sperm. Sperms × (PR & Normal)% indicates the number of progressively 
motile and morphologically normal sperm, where the horizontal coordinate is 
the number of sperm samples, and the vertical coordinate is the total number 
of progressively motile and morphologically normal sperm in millions.

algorithm and manual microscopic examination was 1, suggesting that 
the difference between the unstained and stained morphology of the 
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algorithm was small and the consistency was high.
4. Discussion

We used the BlendMask instance segmentation algorithm [11] to 
segment all single sperm morphologies in the video frames. We inte-

grated the tracking algorithm with sperm ID identification to achieve 
multi-frame morphology detection of the same sperm. For a single 
sperm, the SegNet semantic segmentation algorithm was used to extract 
the head, midpiece, and principal piece comments [3]. The EfficientNet 
model [25] was used to perform a three-part classification and combine 
the results to provide more accurate and objective sperm morphology 
analysis results. Unstained sperm morphology analysis ensures that the 
activity and viability of the detected sperm are maintained, allowing 
for non-destructive, accurate, and rapid detection of live sperm mor-

phology. The system uses a deep learning algorithm to perform detailed 
morphological analysis of each sperm, allowing the selection of sperm 
with good forward motility and normal morphology for assisted repro-

duction technologies. Sperm selection is of great significance and has 
applications in assisted reproduction [13,8].

Several algorithms have been proposed to analyze live sperm, but 
they are frequently restricted to specific criteria, such as motility or 
morphology. However, these earlier algorithms achieved a relatively 
high accuracy for specific tasks. The issue was that the motility track-

ing algorithms were unable to determine morphology, whereas the 
morphology algorithms were unable to compensate for sperm move-

ment, necessitating the use of fixed specimens. Compared with previous 
algorithms, we developed an innovative non-invasive sperm morphol-

ogy analysis algorithm that can dynamically detect the morphological 
and motility information of live sperm, including the head, midpiece, 
and principal piece, and accurately measure the viability of individual 
sperm, consistent with the standard semen analysis method recom-

mended by the WHO. The method accurately tracks all sperm in the 
field of view and generates multi-frame morphological data for each 
sperm by matching the tracked position information, which can reflect 
sperm quality more comprehensively and objectively through multidi-

mensional analysis. The tracking algorithm solves the issues of sperm 
motion crossover, similar appearance of similar sperm exchanging ID, 
and lost and missed frames and achieves an average MOTA value of 
93.47%. The sperm morphological analysis method accurately segments 
and extracts data to obtain the head, midpiece, and principal piece 
comments and then uses the deep learning classification algorithm to 
classify and evaluate each part of the segmented sperm according to 
the WHO standards. Our algorithm accurately classified normal sperm 
and provided various explanations for the abnormalities. The morpho-

logical accuracy was verified by multicenter clinical verification to be 
> 90%, consistent with the standard of clinical detection of sperm mor-

phology, and demonstrating high clinical application value.

This study detected progressively motile and morphologically nor-

mal sperms. The percentage of progressively motile and morphologi-

cally normal sperm in traditional semen analysis can only be deter-

mined by multiplying the percentage of progressively motile sperm by 
the percentage of morphologically normal sperm. However, this method 
of calculation may not provide objective results for patients who do not 
possess any progressively motile or morphologically normal sperm. The 
integrated viability and morphology analysis method for live sperm can 
accurately locate each sperm with progressive motility and normal mor-
phology, providing precise measurement of the quantity of high-quality 
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Fig. 4. Comparison of stained morphology with algorithmic morphology using Bland-Altman and Passing-Bablok plots for the three hospitals. (A-C) Bland-Altman 
plots for morphological results detected at the three hospitals (One Woman Infant, Renji, and Ji’ai, respectively). The solid line in the Bland-Altman plot indicates 
the mean difference between the two methods, and the dashed line indicates the 95% limits of agreement (1.96 standard deviations of the mean difference). (D-F) 
Passing-Bablok plots for the three hospitals. The solid line indicates the regression line and the dashed line indicates the regression line confidence intervals.
sperm. This non-invasive method can locate progressively motile and 
morphologically normal sperm for intracytoplasmic sperm injection to 
improve the success rate of second-generation IVF, with far-reaching 
implications for the future of assisted reproductive medicine.

Compared with existing methods, the innovations of this study are 
notable in the following three areas. (1) The algorithm can directly 
analyze live sperm from liquefied semen smears without the need for 
staining, which significantly reduces the workload of laboratory tech-

nicians and enables multidimensional analysis of active sperm with 
different morphologies, resulting in more accurate and objective results 
for the assessment of sperm morphology. (2) We propose a new method 
for sperm morphology and multi-sperm tracking, which improves the 
accuracy of sperm morphology assessment and enables precise track-

ing of each sperm, even in cases where the heads intersect, thereby 
providing a basis for multi-frame multidimensional analysis of sperm 
morphology. (3) The algorithm can dynamically monitor sperm and 
accurately identify all progressively motile and morphologically nor-

mal sperm in the field of view, addressing the limitations of existing 
methods in accurately calculating minority groups of non-existent pro-

gressive motility and morphologically normal sperm, and accurately 
selecting high-quality sperm with normal morphology and excellent 
motility for intracytoplasmic sperm injection (ICSI).

Throughout our study, we strictly followed the manufacturer’s rec-

ommendations and WHO manual guidelines for semen analysis. As 
a result, near-perfect experimental results were obtained. Our system 
demonstrated high consistency with the stained morphology obtained 
from several hospitals that operated manually, based on the WHO man-

ual. Morphological results obtained from these hospitals were stained 
using a manual microscope. The slope of the regression line of the 
Passing-Bablok plot between stained and unstained morphology at 
Shanghai First Maternity and Infant Hospital and Renji Hospital was 
1, indicating that the results of the system’s analysis of unstained mor-

phology were consistent with those of the WHO recommendations, and 
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the unstained morphology could be used for clinical semen analysis.
This study had some limitations. All the semen samples used in this 
study were obtained from Shanghai. Because of the possible regional 
differences in semen parameters, further collaborative studies should 
be performed in hospitals across China to validate our algorithm.

In conclusion, this study achieved automated detection of progres-

sively motile and morphologically normal sperm, which is essential for 
the subsequent selection of morphologically normal and motile sperm 
for ICSI. This technology holds promise for streamlining and enhanc-

ing the process of sperm analysis. We reached an agreement with our 
partners to jointly develop this technology into a fully automated se-

men analysis device that integrates the assessment of concentration, 
motility, and morphology. This significant improvement will boost the 
precision and consistency of analyses, aiding physicians in making more 
scientifically informed diagnostic decisions. Additionally, this technol-

ogy will reduce the procedural steps required by andrology laboratory 
physicians during semen analysis, offering quicker and more efficient 
feedback to those being tested.
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